Polar Coordinat es

Definition, Plotting Points, Graphs of Polar Equation

Locating Points

Coordinate systems are used to locate the position of a point.

In rectangular coordinates:

•We break up the plane into a grid of horizontal and vertical line lines.

•We locate a point by identifying it as the intersection of a vertical and a horizontal line.

In polar coordinates:

•We break up the plane with circles centered at the origin and with rays emanating from the origin.

•We locate a point as the intersection of a circle and a ray.

$$(r,\theta) = \left(2, \frac{\pi}{6}\right)$$

Note, however, that every point in the plane as <u>infinitely many</u> polar representations. (2,^{*}/6)

× /6

Example 2:

(,,)

The relationship between rectangular and polar coordinates is as follows.

(x,

У

(M), (H)

X

Y

Pole

(Origin)

X

The point (x, y) lies on a circle of radius r, therefore, r^2 $= x^2 + y^2$.

Definitions of trigonometric functions

Exampl Convert the point (1,1) into polar coordinates X, Y = 1,1

$$\tan \theta = \frac{y}{x} = \frac{1}{1} = 1$$
$$\theta = \frac{\pi}{4}$$

 $r = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$ One set of polar coordinates is $(r, \theta) = \left(\sqrt{2}, \frac{\pi}{4}\right)$. Another set is $(r, \theta) = \left(-\sqrt{2}, \frac{5\pi}{4}\right)$.

Graphs of Polar Equation

Example 1:

r = 7 We could square both sides

 $r^2 = 49$

Now use our conversion:

$$r^2 = x^2 + y^2$$

 $x^2 + y^2 = 49$

We recognize this as a circle with center at (0, 0) and a radius of 7.

On polar graph paper it will centered at the origin and out 7

Exampl,e 2:

$$r\sin\theta = -5$$

Now use our conversion:

$$y = r \sin \theta$$

y =- 5

We recognize this as a horizontal line 5 units below the origin (or on a polar plot below the pole)

TESTS FOR SYMMETRY

These tests are sufficient but not necessary so if test fails you don't know anything.

Symmetry with Respect to the Polar Axis (*x* axis)

Replace θ by - θ and if you get original equation back

Symmetry with Respect to the Line $\theta = \pi/2$ (y axis)

Replace θ by π - θ and if you get original equation back

Symmetry with Respect to the Pole (Origin)

Replace *r* by - *r* and if you get original equation back

Example 1: $r = 1 + 2\cos\theta$ YES! Let's test for symmetry $r = 1 + 2\cos(-\theta)$ $r = 1 + 2\cos\theta$ **Polar Axis:** $r = 1 + 2\cos(\pi - \theta)$ Use the difference formula Line $\theta = \pi/2$: $r = 1 + 2(\cos \pi \cos \theta + \sin \pi \sin \theta)$ $r = 1 - 2\cos \theta$ Not the original equation So this graph is symmetric with respect $-r = 1 + 2\cos\theta$ Pole: to the polar axis (x axis). We will only need to choose θ 's on the top half of the Not the original equation. graph then and we can use symmetry to get the other half.

θ	$r = 1 + 2\cos\theta$	
0	1+2(1)=3	
$\frac{\pi}{6}$	$1+2\left[\frac{\sqrt{3}}{2}\right] \approx 2.73$	11#
$\frac{\pi}{3}$	$1+2\begin{bmatrix} 1\\ 1\\ 2\end{bmatrix} = 2$	12 7 -
$\frac{\pi}{2}$	1+2(0) = 1	13 π 12
$\frac{2}{2\pi}$	$1 + 2 \begin{bmatrix} - \frac{1}{2} \\ - \frac{1}{2} \end{bmatrix} = 0$	
$\frac{5\pi}{6}$	$1+2\left\ -\frac{\sqrt{3}}{2}\right\ \approx -0.73$	3
π	1 + 2(-1) = -1	l et

Let's let each unit be 1/2.

_et's plot the symmetric points

 $r^2 = 4\sin(2\theta)$ **Example 2** FAILS Let's test for symmetry $r^{2} = 4\sin(2(-\theta))$ $r^{2} = -4\sin(2\theta)$ **Polar Axis:** $r2 = 4\sin(2(\pi - \theta)) = 4\sin(2\pi - 2\theta)$ Line $\theta = \pi/2$: sin is periodic so can drop the 2π FAILS $r^{2} = 4\sin(-2\theta) = -2\sin(2\theta)$ **Pole:** $(-r)^2 = 4\sin(2\theta)$ $r^2 = 4\sin(2\theta)$ So this graph is symmetric with respect to the pole.

-	$2 \cdot (2 \circ)$	a Ca	This type of graph is called a <i>lemniscate</i>
θ	$r^2 = 4\sin(2\theta)$	r	
0	4(0) = 0	0	$\frac{2\pi}{12} \qquad \frac{\pi}{12} \qquad \frac{5\pi}{12} \qquad \frac{\pi}{12} \qquad \frac{\pi}{12$
$\frac{\pi}{6}$	$4 \begin{vmatrix} \sqrt{3} \\ 2 \end{vmatrix} = 2\sqrt{3}$	±1.9	$\frac{3\pi}{4}$ $\frac{5\pi}{6}$ $\frac{\pi}{6}$
$\frac{\pi}{4}$	4(1) = 4	±2	
$\frac{\pi}{3}$	$4 \boxed{\frac{\sqrt{3}}{2}} = 2\sqrt{3}$	±1.9	π $\frac{13\pi}{12}$ $\frac{23\pi}{12}$
$\frac{\pi}{2}$	4(0) = 0	0	$\frac{7\pi}{6}$ $\frac{5\pi}{7\pi}$
22	in the second		$\begin{array}{c} 4 \\ \frac{4\pi}{3} \\ \frac{17\pi}{12} \\ \frac{3\pi}{2} \\ \frac{19\pi}{12} \\ \end{array} \begin{array}{c} 5\pi}{3} \\ \frac{19\pi}{12} \\ \end{array}$

Let's let each unit be 1/4.

Exampl Graph the polar equation $r = 2\cos \theta$.

Each polar graph below is called a **Rose** curve.

 $r = 2\cos 3\theta$

The graph will have *n* petals if *n* is odd, and 2*n* petals if *n* is even.

Each polar graph below is called a **Lemniscate**.

 $r^2 = 2^2 \sin 2\theta$

•THANK YOU